Explorar el Código

Another medium problem done

master
Lachlan Jacob hace 5 años
padre
commit
44795522c0
Se han modificado 3 ficheros con 57 adiciones y 0 borrados
  1. 29
    0
      problems/654/main.py
  2. 25
    0
      problems/654/problem.txt
  3. 3
    0
      problems/654/run.sh

+ 29
- 0
problems/654/main.py Ver fichero

@@ -0,0 +1,29 @@
# Definition for a binary tree node.
class TreeNode:
def __init__(self, x):
self.val = x
self.left = None
self.right = None

class Solution:
def constructMaximumBinaryTree(self, nums):
if len(nums) == 0:
return None
elif len(nums) == 1:
return TreeNode(nums[0])
else:
max = -1
maxIndex = -1
for x in range(len(nums)):
if nums[x] > max:
max = nums[x]
maxIndex = x
root = TreeNode(max)
root.left = self.constructMaximumBinaryTree(nums[0:maxIndex])
root.right = self.constructMaximumBinaryTree(nums[maxIndex + 1:])
return root

s = Solution()
print("Expected tree with root 6")
print("Got: tree with root", s.constructMaximumBinaryTree([3, 2, 1, 6, 0, 5]).val)

+ 25
- 0
problems/654/problem.txt Ver fichero

@@ -0,0 +1,25 @@
Given an integer array with no duplicates. A maximum tree building on this array is defined as follow:

The root is the maximum number in the array.
The left subtree is the maximum tree constructed from left part subarray divided by the maximum number.
The right subtree is the maximum tree constructed from right part subarray divided by the maximum number.

Construct the maximum tree by the given array and output the root node of this tree.

Example 1:

Input: [3,2,1,6,0,5]
Output: return the tree root node representing the following tree:

6
/ \
3 5
\ /
2 0
\
1

Note:

The size of the given array will be in the range [1,1000].


+ 3
- 0
problems/654/run.sh Ver fichero

@@ -0,0 +1,3 @@
#!/bin/bash

python3 main.py

Cargando…
Cancelar
Guardar