| @@ -0,0 +1,22 @@ | |||
| class Solution: | |||
| def productExceptSelf(self, nums): | |||
| left = [1] | |||
| right = [1] | |||
| for x in range(1, len(nums)): | |||
| left.append(left[x-1] * nums[x-1]) | |||
| for x in range(1, len(nums)): | |||
| right.append(1) | |||
| for x in range(len(nums) - 2, -1, -1): | |||
| right[x] = right[x+1] * nums[x+1] | |||
| result = [] | |||
| for x in range(0, len(left)): | |||
| result.append(left[x] * right[x]) | |||
| return result | |||
| s = Solution() | |||
| print("Expected: [24, 12, 8, 6]") | |||
| print("Got:", s.productExceptSelf([1, 2, 3, 4])) | |||
| @@ -0,0 +1,13 @@ | |||
| Given an array nums of n integers where n > 1, return an array output such that output[i] is equal to the product of all the elements of nums except nums[i]. | |||
| Example: | |||
| Input: [1,2,3,4] | |||
| Output: [24,12,8,6] | |||
| Constraint: It's guaranteed that the product of the elements of any prefix or suffix of the array (including the whole array) fits in a 32 bit integer. | |||
| Note: Please solve it without division and in O(n). | |||
| Follow up: | |||
| Could you solve it with constant space complexity? (The output array does not count as extra space for the purpose of space complexity analysis.) | |||
| @@ -0,0 +1,3 @@ | |||
| #!/bin/bash | |||
| python3 main.py | |||