@@ -0,0 +1,11 @@ | |||
class Solution: | |||
def maxSubArray(self, nums): | |||
max_val = -1000000000000 | |||
current = -1000000000000 | |||
for n in nums: | |||
current = max(n, n + current) | |||
max_val = max(max_val, current) | |||
return max_val | |||
s = Solution() | |||
print(s.maxSubArray([8, -19, 5, -4, 20])) |
@@ -0,0 +1,11 @@ | |||
Given an integer array nums, find the contiguous subarray (containing at least one number) which has the largest sum and return its sum. | |||
Example: | |||
Input: [-2,1,-3,4,-1,2,1,-5,4], | |||
Output: 6 | |||
Explanation: [4,-1,2,1] has the largest sum = 6. | |||
Follow up: | |||
If you have figured out the O(n) solution, try coding another solution using the divide and conquer approach, which is more subtle. |
@@ -0,0 +1,3 @@ | |||
#!/bin/bash | |||
python3 main.py |