@@ -0,0 +1,15 @@ | |||
class Solution: | |||
def peakIndexInMountainArray(self, A): | |||
# return the peak of the mountain... i.e Where the array starts going down in value | |||
last = -1 | |||
for ind, n in enumerate(A): | |||
if n < last: | |||
return ind - 1 | |||
last = n | |||
# This should never happen | |||
return -1 | |||
s = Solution() | |||
print("Expected: 1") | |||
print("Got:", s.peakIndexInMountainArray([0, 2, 1, 0])) |
@@ -0,0 +1,23 @@ | |||
Let's call an array A a mountain if the following properties hold: | |||
A.length >= 3 | |||
There exists some 0 < i < A.length - 1 such that A[0] < A[1] < ... A[i-1] < A[i] > A[i+1] > ... > A[A.length - 1] | |||
Given an array that is definitely a mountain, return any i such that A[0] < A[1] < ... A[i-1] < A[i] > A[i+1] > ... > A[A.length - 1]. | |||
Example 1: | |||
Input: [0,1,0] | |||
Output: 1 | |||
Example 2: | |||
Input: [0,2,1,0] | |||
Output: 1 | |||
Note: | |||
3 <= A.length <= 10000 | |||
0 <= A[i] <= 10^6 | |||
A is a mountain, as defined above. | |||
@@ -0,0 +1,3 @@ | |||
#!/bin/bash | |||
python3 main.py |